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Abstract
We propose to investigate whether attention heads in vision transformers specialize for different
functions and how this relates to robustness under distribution shift. Attention heads in language
transformers learn distinct roles (syntax vs. semantics), but similar analysis for vision models
remains limited. We will train vision transformers on ImageNet, systematically ablate individual
attention heads, and measure performance on clean and corrupted test sets (Figure 1). This
requires implementing head ablation mechanisms, analyzing attention patterns, and evaluating
across multiple distribution shifts to understand which components contribute to robustness.

Figure 1: We will train vision transformers with different head configurations, ablate individual
attention heads, and measure performance on clean ImageNet (top) versus corrupted variants (bot-
tom). Color intensity indicates head importance—red heads cause large accuracy drops when
removed, blue heads are redundant. This reveals whether heads specialize for robustness.

Your abstract should concisely describe what problem you will address, what you will build or
investigate, and what technical requirements it involves. Including a figure or diagram early (with
a substantive caption explaining what is shown) helps communicate your approach visually.
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Introduction
Vision transformers achieve strong performance on image classification, but how they work inter-
nally is less clear than for CNNs. CNNs learn hierarchical features (edges → textures → objects),
but the role of individual attention heads in ViTs is not well understood. This matters because
understanding which heads are important could improve model efficiency and robustness.

Research on language transformers shows that attention heads specialize—some focus on syntax,
others on semantics. Voita et al. (2019) and Michel et al. (2019) demonstrated that many heads
can be pruned without hurting performance, suggesting redundancy. Whether vision transformers
exhibit similar patterns is unclear. Images have different structure than text (spatial rather than
sequential), so heads might […]

A related question is how transformers handle distribution shift. Models trained on ImageNet often
fail when tested on corrupted images (blur, noise, weather effects). Understanding which attention
heads contribute to robustness could […]

Your introduction should establish problem context, explain why it matters, provide necessary tech-
nical background, and describe your investigation approach.

Related Work
Dosovitskiy et al. (2021) introduced Vision Transformer (ViT), showing that transformers can
match CNN performance on image classification. ViT splits images into patches and processes
them through standard transformer layers. Touvron et al. (2021) developed DeiT with training
improvements for smaller datasets. These establish transformers as viable for vision tasks, but how
they work internally is less clear than for CNNs.

In natural language processing, several papers have analyzed attention head function. Voita et
al. (2019) showed many heads in translation models are redundant. Michel et al. (2019) found
40% of BERT heads can be removed without major accuracy loss. Clark et al. (2019) visualized
attention patterns revealing syntactic specialization. Not all attention heads contribute equally in
language models.

For vision transformers, most interpretability work examines aggregate patterns rather than in-
dividual heads. Raghu et al. (2021) found ViTs attend to global structure while CNNs process
locally. Dosovitskiy et al. (2021) visualized attention maps showing semantically meaningful pat-
terns. Systematic ablation studies of individual heads—common in NLP—are less developed for
vision models.

Hendrycks & Dietterich (2019) introduced ImageNet-C to measure robustness to corruptions (blur,
noise, weather). Bhojanapalli et al. (2021) found ViTs show different robustness properties than
CNNs, relying more on shape than texture. Paul & Chen (2022) showed attention mechanisms
contribute to […]

Your related work should cover foundation papers, prior approaches to similar problems, recent
relevant developments, and the specific gap your project addresses.

Technical Approach
We will train vision transformers on ImageNet, systematically ablate individual attention heads,
and measure performance on clean and corrupted test sets.
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Design Decisions

Several design decisions reduce project scope to fit within a term timeline and compute budget
while preserving the core investigation:

Model Size - ViT-Tiny vs. ViT-Base: We use ViT-Tiny (depth=8, hidden=192) rather than
ViT-Base (depth=12, hidden=768). ViT-Tiny trains in 15-20 GPU-hours per model versus 100+
hours for ViT-Base. This brings total compute from 200+ GPU-hours down to ~40 GPU-hours.
The model still has sufficient complexity—24 to 48 attention heads across 8 layers—to study special-
ization patterns. The research question doesn’t require maximum accuracy; it requires comparing
head behavior across conditions.

Number of Variants - Two vs. Many: We train two head configurations (3 and 6 heads per
layer) rather than exploring a wider range (3, 6, 9, 12). Two configurations let us see if head count
affects specialization while keeping training time reasonable. More variants would strengthen the
analysis but aren’t essential for a term project.

Training from Scratch vs. Fine-tuning: We train from scratch rather than fine-tuning pre-
trained models. This costs more compute but lets us control the training process and observe how
heads specialize during learning. For this project, understanding the training dynamics matters
more than achieving maximum accuracy.

Full ImageNet vs. Subset: We use full ImageNet-1K rather than a subset. While a subset
would reduce training time further, ImageNet is standard for robustness benchmarks (ImageNet-
C, ImageNet-R, ImageNet-Sketch). Using the full dataset ensures our results are comparable to
published work.

Model Architecture: We will train ViT-Tiny variants with different head counts (3, 6 heads
per layer) to see if head count affects specialization. Maintaining constant hidden dimension lets
us isolate the effect of head count from overall model capacity. The architecture consists of patch
embedding, transformer blocks with multi-head attention, and a classification head.
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Figure 2: ViT-Tiny architecture showing patch embedding, transformer blocks with multi-head
attention, and classification head. We will systematically ablate individual attention heads (shown
in different colors) within each layer to measure their importance for clean and corrupted image
classification.

Training: We will train on ImageNet-1K using the DeiT training setup: AdamW optimizer, cosine
learning rate schedule, batch size 256, 300 epochs. This should achieve around 72% ImageNet
accuracy for ViT-Tiny based on published results. Training requires approximately 15-20 GPU-
hours per model on A100-class hardware.

Head Ablation: For each trained model, we will zero out individual attention heads and measure
the accuracy drop. Heads that cause large drops when removed are important; heads with minimal
impact are redundant. We will test this on both clean ImageNet validation and corrupted versions
(ImageNet-C with blur, noise, weather effects).

Analysis: We will measure attention distance between heads using Jensen-Shannon divergence to
quantify specialization. We will also compare which heads matter for clean versus corrupted data.
If certain heads are critical only for corruptions, this suggests specialization for robustness.

Evaluation: Beyond ImageNet-C corruptions, we plan to test on ImageNet-R (artistic renditions)
and ImageNet-Sketch (line drawings). These different shift types will show whether robustness
generalizes or depends on specific heads.

Alternative Approaches: We considered using pre-trained models instead of training from
scratch, which would be faster but wouldn’t let us observe how heads specialize during training.
We also considered fine-tuning on a smaller dataset (CIFAR-100), but ImageNet is necessary for
[…]

Your technical approach should describe model architecture with key design decisions, training pro-
cedures, and evaluation strategy. Discuss alternative approaches and why you chose your method.
For example: How would a human solve this problem? What features or patterns would they look
for? Are there simpler baselines you considered?
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Dataset Description
ImageNet-1K: We will train on the ILSVRC 2012 classification dataset containing 1.28M training
images across 1000 classes. Images vary in resolution (resized to 224×224 for ViT input). Class
distribution is balanced with approximately 1300 images per class. This dataset is standard for
vision transformer research and allows comparison with published results.

ImageNet-C (Corruptions): 50,000 validation images with 15 corruption types applied at 5
severity levels. Corruptions include noise (Gaussian, shot, impulse), blur (defocus, motion, glass,
zoom), weather (snow, frost, fog), and digital artifacts (JPEG compression, pixelation, contrast
changes). Each corruption severity is calibrated based on human perception studies. This bench-
mark tests robustness to common real-world image degradations.

ImageNet-R (Renditions): 30,000 images of ImageNet classes in different artistic renditions
including paintings, cartoons, graffiti, embroidery, graphics, and sketches. Classes overlap with
ImageNet-1K but images differ substantially in style. This tests whether models rely on texture
features versus shape and semantic features.

ImageNet-Sketch: 50,889 sketch images covering 1000 ImageNet classes, collected from search
queries. Images are black-and-white line drawings representing objects. This extreme distribution
shift tests […]

Representative samples from each distribution shift type are shown below.

Figure 3: Dataset samples showing the same object class (e.g., “golden retriever”) across different
distribution shifts: clean ImageNet (left), ImageNet-C with corruption (center-left), ImageNet-
R artistic rendition (center-right), and ImageNet-Sketch line drawing (right). These diverse test
conditions reveal whether attention heads specialize for different types of robustness.

We will use standard data augmentation during training (random crop, horizontal flip, color jit-
ter, RandAugment) following DeiT protocol. All datasets are publicly available for academic re-
search. These benchmarks test multiple distribution shift types (corruptions, style changes, modal-
ity changes). Dataset sizes are large enough that per-head ablation measurements should have low
variance.

Evaluation Metrics: We will measure top-1 accuracy on ImageNet validation and corruption
robustness using mean Corruption Error (mCE):

mCE = 1
|𝒞| ∑

𝑐∈𝒞

Error𝑐(model)
Error𝑐(baseline)
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where 𝒞 is the set of corruption types. Lower mCE indicates better robustness. We will also report
per-corruption accuracy to identify which heads matter for specific shift types.

Your dataset description should characterize the data (size, structure, properties), explain appro-
priateness for your problem, and describe preprocessing and augmentation. Include evaluation
metrics—show equations if they help clarify what you’re measuring. Address whether datasets
are representative, balanced, and sufficient. Note: Avoid using pre-packaged competition datasets
(Kaggle, etc.) without substantial modification or novel analysis.

Architecture Investigation Plan
Baseline Model Training: We will start by training ViT-Tiny models with different head counts
(3, 6 heads per layer) on ImageNet. The goal is to get models that achieve reasonable accuracy
(~72% based on DeiT results) so we have a good baseline for ablation experiments. If training
doesn’t converge well, we’ll need to debug (adjust learning rate, check data augmentation) before
moving forward.

Ablation Experiments: Once we have trained models, we’ll implement the head ablation
mechanism—basically zeroing out individual heads and measuring how much accuracy drops.
We’ll systematically test each head to identify which ones are critical and which are redundant.
We’ll also compute metrics like attention distance between heads to quantify specialization.

Robustness Testing: After identifying important heads on clean ImageNet data, we’ll test the
same models on corrupted data (ImageNet-C, ImageNet-R, ImageNet-Sketch). The key question
is whether the same heads that matter for clean data also matter for corrupted data, or if different
heads handle robustness.

Understanding What Heads Do: For heads we identify as important, we’ll visualize their
attention patterns to understand what they’re looking at. Are critical heads attending to edges?
Textures? Global structure? This helps interpret why certain heads matter more than others.

Analysis and Writeup: We’ll compile all results, look for patterns across the different head
configurations we tested, and prepare the final analysis. If we have extra time, we might explore
whether we can improve efficiency by pruning redundant heads.

Your architecture investigation plan should describe specific variants you will test, how you will
isolate effects of design decisions, and the logical progression of experiments.

Estimated Compute Needs
Training Requirements: ViT-Tiny training requires approximately 15-20 GPU-hours per model
variant on A100-class GPUs (40GB memory). We plan to train two variants (3 and 6 heads per
layer), totaling around 40 GPU-hours. Batch size 256 should fit in memory. Training throughput
gives roughly 1 day wall-clock time per model.

Compute Resources: We will use cloud GPU instances (e.g., Lambda Labs at ~$1/hour for
A100, totaling $40-50 for training). Alternatively, institutional cluster access or Google Colab Pro
could work, though Colab may require breaking training into sessions.

Evaluation Requirements: ImageNet validation evaluation takes approximately 10 minutes per
run. Head ablation experiments (up to 48 per model: 8 layers × 6 heads) combined with distribu-
tion shift benchmarks require evaluation compute. Total estimate includes margin for additional
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experiments.

Backup Plan: If compute budget is insufficient, we can train on a smaller dataset (CIFAR-100
or ImageNet subset) or reduce to a single model configuration. Evaluation workload is light and
could run on consumer GPUs (RTX 3080/3090).

Software: PyTorch 2.0 with torchvision for data loading, timm library for ViT implementation
(modified to support head ablation), Weights & Biases for experiment tracking.

Your compute needs should specify hardware resources with verified access, estimate requirements
for training and evaluation, describe software stack, and provide backup plans.

Likely Outcome and Expected Results
Success Criteria: This project succeeds if we can answer: (1) Do attention heads in vision
transformers develop interpretable specialization? (2) Does head specialization predict robustness
to distribution shift? (3) How does head count affect both specialization and robustness?

Expected Results: Based on NLP findings, we expect 30-50% of heads may be redundant. Some
heads will likely be critical—removing them causes large accuracy drops. We expect heads impor-
tant for clean data may differ from heads important for corruptions. Visualizing attention patterns
should show whether critical heads attend to specific features (edges, textures) or global context.

Likely Failure Modes: Training may not converge—ViT training is sensitive to hyperparameters,
though following the DeiT recipe should help. Heads might all be equally important or equally
redundant, which would still be interesting (suggesting vision differs from language). Specialization
might exist but not relate to robustness. Compute might be insufficient—we can fall back to smaller
models or fewer variants.

Learning Goals: This project will show whether vision transformers develop functional special-
ization like language models, what components contribute to robustness, and whether head-level
analysis provides information beyond aggregate attention patterns.

Your outcomes section should define success criteria, describe expected results, identify likely failure
modes with mitigation strategies, and articulate learning goals.

Project Timeline (Proposed)
Provide an anticipated timeline showing major milestones. Progress rarely follows a linear timeline,
but planning major phases helps organize the work.

• 28 Jan - 05 Feb: Finalize project scope, set up compute environment, download datasets,
verify data pipeline works correctly

• 06 Feb - 12 Feb: Implement training framework with configurable architectures, begin
training first model, implement ablation mechanism, validate code on small-scale experiments

• 13 Feb - 19 Feb: Complete training all model variants, verify models reach expected per-
formance, implement specialization metrics, run preliminary ablation analysis

• 20 Feb - 26 Feb: Complete ablation analysis for all models, evaluate on distribution shift
benchmarks, identify critical versus redundant heads

• 27 Feb - 05 Mar: Analyze head specialization patterns, visualize attention maps, perform
mechanistic analysis of what features critical heads attend to, run ablation correlation analysis
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• 06 Mar - 12 Mar: Complete remaining experiments to test specific hypotheses, prepare
presentation with key findings and visualizations

• 13 Mar - 18 Mar: Write final report with complete analysis, create model card documenting
trained models, record video demonstration, finalize code documentation

Critical Dependencies: Training must complete before detailed analysis. If experiments run
smoothly, pursue stretch goals such as analyzing attention rollout across layers or testing whether
pruning redundant heads during training improves efficiency.

Your timeline should show week-by-week milestones with specific deliverables and dependencies be-
tween tasks.

Primary References and Codebases
Vision Transformer Architectures:

• Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … &
Houlsby, N. (2021). “An image is worth 16x16 words: Transformers for image recognition at
scale.” ICLR 2021. [Foundation paper introducing ViT architecture]

• Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., & Jégou, H. (2021). “Train-
ing data-efficient image transformers & distillation through attention.” ICML 2021. [DeiT
training procedures we will follow]

Attention Analysis Methods:

• Voita, E., Talbot, D., Moiseev, F., Sennrich, R., & Titov, I. (2019). “Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned.” ACL 2019.
[Head pruning methodology adapted to vision domain]

• Michel, P., Levy, O., & Neubig, G. (2019). “Are sixteen heads really better than one?”
NeurIPS 2019. [Ablation analysis techniques we will apply]

• Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., & Dosovitskiy, A. (2021). “Do vision
transformers see like convolutional neural networks?” NeurIPS 2021. [ViT representation
analysis providing context]

Robustness Benchmarks:

• Hendrycks, D., & Dietterich, T. (2019). “Benchmarking neural network robustness to common
corruptions and perturbations.” ICLR 2019. [ImageNet-C benchmark definition]

• Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F., Dorundo, E., … & Steinhardt, J.
(2021). “The many faces of robustness: A critical analysis of out-of-distribution generaliza-
tion.” ICCV 2021. [ImageNet-R and robustness benchmarks]

Codebases:

• timm (PyTorch Image Models) - Repository: https://github.com/rwightman/pytorch-image-
models

We will use this library’s ViT implementation as a starting point, modifying it to support individual
attention head ablation. How we will use it: The library provides ViT architecture definitions
and training utilities. What we will modify: We will add hooks to the attention mechanism
to enable per-head ablation (zeroing specific head outputs). What we will add: Specialization
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metrics (attention distance, ablation correlation), systematic evaluation across distribution shifts,
and visualization tools for attention patterns.

Your references should include foundation papers and codebases you will use. For each codebase,
explicitly state: (1) How will you use it? (2) What will you modify? (3) What will you add? This
clarifies your contribution versus existing work.
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